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LE'ITER TO THE EDITOR 

Phase transition in a two-dimensional three-state Potts 
model with the addition of an infinitelrange coupling 

F Fucitot, G Paladin and A VulpianiS 
Istituto di Fisica 'G Marconi', Universita degli Studi, Roma, Italy 

Received 2 1 December 1982 

Abstract. We study the two-dimensional three-state Potts model with nearest-neighbour 
and infinite-range interaction at different values of the two coupling constants. We analyse 
the intermediate region between the pure infinite-range interaction and the nearest- 
neighbour one. We find a first-order phase transition for all values of the coupling constants 
on the coexistence curve except for the pure nearest-neighbour interaction where Baxter's 
result holds. A Monte Carlo simulation which supports our theoretical expectation is 
expounded. 

The action of the 4-state Potts model (Wu 1982) on a cubic lattice is 

where vi (ai = 1 , .  , , , q )  is the spin on the ith lattice site and the sum runs over 
nearest-neighbour pairs. 

The nature of the phase transition in three-dimensional lattices for 4 = 3 is con- 
troversial, Some authors find a second-order phase transition (using renormalisation 
group methods (Zaprudskii 1977) or high-temperature expansions (Enting and Domb 
1975)), while numerical results indicate a first-order phase transition partially super- 
posed with a second-order phase transition (Blote and Swendsen 1979) or a pure 
first-order one (Knak Jensen and Mouritsen 1979). In Fucito and Parisi (1981) and 
Fucito and Vulpiani (1982) it is shown by renormalisation group methods and Monte 
Carlo simulations that the three-dimensional three-state Potts model is very unstable 
to perturbation and this may explain the different conclusions given in the literature. 

The situation is well known in two dimensions for q = 3: the model described by 
the action (1) has a second-order phase transition (Baxter's (1973) analytical result). 

On the other hand the model with only infinite-range interaction exhibits a 
first-order phase transition (Wu 1982). 

The two-dimensional 4 = 3 model with the addition of another interaction (antifer- 
romagnetic, multi-site, non-nearest-neighbour) describes many interesting problems, 
most of which are not yet solved. Recently the two-dimensional q = 3 Potts model 
with three bodies on a triangular lattice has been studied (Saito 1982) and the phase 
transition changes from second to first order when coupling constants are changed, 
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We study a two-dimensional 4 = 3  Potts model on a quadratic lattice of N sites 
with nearest-neighbour and infinite-range interaction described by the action 

where the notations are the same as in (1). 
This model in two dimensions and 4 = 2 (i.e. a modified 2-Ising model) has been 

recently studied in Livi et a1 (1982); the authors claim that there is a critical line in 
the A, K plane and the system exhibits only a second-order phase transition. 

In two dimensions for q = 3  there is a first-order phase transition at the point 
A = A c ,  K = 0 while A = 0, K = K, is a critical point. Our aim is to investigate the 
behaviour of the phase separation line between these two points. 

Our result is that the transition is always first order at non-vanishing A. Let us 
formulate an argument to justify this idea. 

The infinite-range part in (2) may be transformed (S,,, = X:=l S,, 8,) into 

and using the gaussian transformation 

We can identify the partition function from (4) as 

= fi dH, exp [-NH2/4A +NF(K, HIK)]  ( 5 )  
r = l  

where F(K, H) is the free energy per site of the Potts model (1) with a magnetic field 
H = (H1,. . . , H q )  and H 2  = ZlG1 Hf. In the limit N -* 00 we can perform a saddle 
point approximation which leads to 

f ( K ,  A )  =m$ [F(K, H/K)-H2/4A]. (6)  

f is the free energy per site of the model (2). We can now expand F ( K , H )  for 
small H: 

4 4 

n,m = 1 n . m , / = l  
F(K,  H )  = anm (K)HnHm + 1 bnml (KWnHmHl 

As the bn,,,,./(K) are not vanishing at q = 3, F(K,  H )  has two minima with respect to 
H for H = H"' and H = H'2' with F(K,  H"') S F ( K ,  H'") for K B K,. These two 
minima assume the same value only for K = K,. For the sake of clearness figure 1 
shows F against H where H, =Ha, with a, fixed. Therefore figure 2 gives the expected 
behaviour of the two minima of F as well as of F(K,  H / K )  - H2/4A with respect to 
K .  
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Figure 1. Free energy F against magnetic field H 
for model (1). 

Figure 2. Free energy f against K for model (2). 
The curves I and I1 are drawn for the two different 
minima of F(K, H I K ) - H 2 / 4 A  as a function of H. 

We can infer from (6) that df/dK has a discontinuity at K,. Only for a particular 
choice of the coefficients a, b, c, in (7) will the two curves f in figure 2 join smoothly 
to each other, yielding a continuous df/dK. 

Then there is an indication of a first-order, discontinuous, transition. Since the 
coefficients in (7) are not exactly known, we have no rigorous proof for our conclusion 
but just a heuristic argument. We have therefore performed a Monte Carlo (MC) 

computation to check our idea. The most direct way to determine the order of the 
transition consists in numerically computing the internal energy E(K). In this manner 
one can see if an energy gap does exist around K, as well as if there is a hysteresis 
curve (1st-order transition). Such an approach is problematic since hysteresis effects 
are present up to lo4 MC steps because of critical slowing down (e.g. see Binder 1981 
and Saito 1982). 

Nevertheless this method is useful to determine the K, roughly, but it needs a 
very long computation time to check the order of the phase transition. We have 
therefore determined first the transition coupling K = K, for every A performing our 
simulation on a 60 x 60 square lattice with periodic boundary condition. 

We have gathered results for A =0.1, 0.2, 0.4, 0.8, 1.6. The coexistence line 
ending at the Baxter critical point is shown in figure 3. 

We have then used the ‘mixed phase’ techniques as developed in Bhanot and 
Creutz (1980) and Fucito and Vulpiani (1982) with 2500 MC steps, to check the kind 
of transition. We prepared a system by adding a high-temperature configuration 
(K < K,) and a low-temperature one (K >Kc). 

Then we get MC computation on such a system at a fixed K near K, and we plot 
the ‘instantaneous’ internal energy E against MC steps. Figure 4 shows the result for 
A = 0.2 at four different values of K. 

There is clear evidence for a gap of the internal energy at the transition. Similar 
results are obtained for the other values of A .  We conclude that there is good evidence 
for the transition to be first order up to A = O  (Baxter’s point) according to our 
theoretical argument. Our result is in agreement with the result of Saito (1982) for 
the two-dimensional q = 3 Potts model on a triangular lattice, which seems to indicate 
that the three-state Potts model is unstable to perturbations. 
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Figure 3. Coexistence line of the phase diagram in the plane A,  K. 
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Figure 4. Mixed phase runs for A = 0.2. Internal energy (units of K )  against Monte Carlo 
steps at different K around K,. 

We are grateful to R Livi, A Maritan and S Ruffo for pointing out the problem to 
us. We also thank G Parisi and L Peliti for useful discussions. 
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